Part Number Hot Search : 
HT9320A 1415514C MAX161 2SB12 CY14B CRHV2010 RM302615 36N5I
Product Description
Full Text Search
 

To Download APT15GN120BDQ1G Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  050-7598 rev c 7-2009 apt15gn120bd_sdq1(g) typical performance curves maximum ratings all ratings: t c = 25c unless otherwise speci? ed. static electrical characteristics characteristic / test conditions collector-emitter breakdown voltage (v ge = 0v, i c = 0.5ma) gate threshold voltage (v ce = v ge , i c = 600a, t j = 25c) collector-emitter on voltage (v ge = 15v, i c = 15a, t j = 25c) collector-emitter on voltage (v ge = 15v, i c = 15a, t j = 125c) collector cut-off current (v ce = 1200v, v ge = 0v, t j = 25c) 2 collector cut-off current (v ce = 1200v, v ge = 0v, t j = 125c) 2 gate-emitter leakage current (v ge = 20v) intergrated gate resistor symbol v (br)ces v ge(th) v ce(on) i ces i ges r gint units volts ana symbol v ces v ge i c1 i c2 i cm ssoa p d t j ,t stg t l apt15gn120bd_sdq1(g) 1200 30 4522 45 45a @ 1200v 195 -55 to 150 300 unit volts amps watts c parameter collector-emitter voltage gate-emitter voltage continuous collector current @ t c = 25c continuous collector current @ t c = 110c pulsed collector current 1 switching safe operating area @ t j = 150c total power dissipation operating and storage junction temperature range max. lead temp. for soldering: 0.063" from case for 10 sec. caution: these devices are sensitive to electrostatic discharge. proper handling procedures should be followed. utilizing the latest field stop and trench gate technologies, these igbt's have ultra low v ce(on) and are ideal for low frequency applications that require absolute minimum conduction loss. easy paralleling is a result of very tight parameter distribution and a slightly positive v ce(on) temperature coef? cient. low gate charge simpli? es gate drive design and minimizes losses. ? 1200v field stop ? trench gate: low v ce(on) ? easy paralleling applications : welding, inductive heating, solar inverters, smps, motor drives, ups min typ max 1200 5.0 5.8 6.5 1.4 1.7 2.1 2.0 200 tbd 120 n/a c e g t o - 2 4 7 g c e d 3 pak g c e (s) (b) microsemi website - http://www.microsemi.com apt15gn120bdq1 apt15gn120sdq1 apt15gn120bdq1(g) apt15gn120sdq1(g) 1200v *g denotes rohs compliant, pb free terminal finish. downloaded from: http:///
050-7598 rev c 7-2009 apt15gn120bd_sdq1(g) 1 repetitive rating: pulse width limited by maximum junction temperature. 2 for combi devices, i ces includes both igbt and fred leakages 3 see mil-std-750 method 3471. 4 e on1 is the clamped inductive turn-on energy of the igbt only, without the effect of a commutating diode reverse recovery current adding to the igbt turn-on loss. tested in inductive switching test circuit shown in ? gure 21, but with a silicon carbide diode. 5 e on2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the igbt turn-on switching loss. (see figures 21, 22.) 6 e off is the clamped inductive turn-off energy measured in accordance with jedec standard jesd24-1. (see figures 21, 23.) 7 r g is external gate resistance, not including r gint nor gate driver impedance. (mic4452) microsemi reserves the right to change, without notice, the speci? cations and information contained herein. thermal and mechanical characteristics unit c/w gm min typ max .64 1.18 5.9 characteristic junction to case (igbt) junction to case (diode) package weight symbol r jc r jc w t dynamic characteristics symbol c ies c oes c res v gep q g q ge q gc ssoa t d(on) t r t d(off) t f e on1 e on2 e off t d(on) t r t d(off) t f e on1 e on2 e off test conditions capacitance v ge = 0v, v ce = 25v f = 1 mhz gate charge v ge = 15v v ce = 600v i c = 15a t j = 150c, r g = 4.3 7 , v ge = 15v, l = 100h,v ce = 1200v inductive switching (25c) v cc = 800v v ge = 15v i c = 15a r g = 4.3 7 t j = +25c inductive switching (125c) v cc = 800v v ge = 15v i c = 15a r g = 4.3 7 t j = +125c characteristicinput capacitance output capacitance reverse transfer capacitance gate-to-emitter plateau voltage total gate charge 3 gate-emitter charge gate-collector ("miller ") charge switching safe operating area turn-on delay time current rise time turn-off delay time current fall time turn-on switching energy 4 turn-on switching energy (diode) 5 turn-off switching energy 6 turn-on delay time current rise time turn-off delay time current fall time turn-on switching energy 4 4 turn-on switching energy (diode) 5 5 turn-off switching energy 6 6 min typ max 1200 65 50 9.0 90 5 55 45 10 9 150 110 410 730 950 10 9 170 185 475 1310 1300 unit pf v nc a ns j ns j downloaded from: http:///
050-7598 rev c 7-2009 apt15gn120bd_sdq1(g) typical performance curves 250s pulse test<0.5 % duty cycle 15v 9v 8v 7v 10v t j = 125c t j = 25c t j = -55c t j = 25c. 250s pulse test <0.5 % duty cycle v ge = 15v. 250s pulse test <0.5 % duty cycle t j = 125c t j = 25c t j = -55c i c = 15a t j = 25c v ce = 600v v ce = 240v v ce =960v v ce , collecter-to-emitter voltage (v) v ce , collecter-to-emitter voltage (v) figure 1, output characteristics(t j = 25c) figure 2, output characteristics (t j = 125c) v ge , gate-to-emitter voltage (v) gate charge (nc) figure 3, transfer characteristics figure 4, gate charge v ge , gate-to-emitter voltage (v) t j , junction temperature (c) figure 5, on state voltage vs gate-to- emitter voltage figure 6, on state voltage vs junction temperature t j , junction temperature (c) t c , case temperature (c) figure 7, breakdown voltage vs. junction temperature figure 8, dc collector current vs case temperature i c = 15a i c = 30a i c = 7.5a bv ces , collector-to-emitter breakdown v ce , collector-to-emitter voltage (v) i c , collector current (a) i c , collector current (a) voltage (normalized) i c, dc collector current(a) v ce , collector-to-emitter voltage (v) v ge , gate-to-emitter voltage (v) i c , collector current (a) 6050 40 30 20 10 0 8070 60 50 40 30 20 10 0 3.53.0 2.5 2.0 1.5 1.0 0.5 0 1.101.05 1.00 0.95 0.90 i c = 30a i c = 15a i c = 7.5a 0 1 2 3 4 5 6 0 2 4 6 8 10 0 4 8 12 16 20 0 20 40 60 80 100 8 10 12 14 16 -50 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 150 6050 40 30 20 10 0 1614 12 10 86 4 2 0 3.02.5 2.0 1.5 1.0 0.5 0 6050 40 30 20 10 0 13v 11v 12v v ge = 15v downloaded from: http:///
050-7598 rev c 7-2009 apt15gn120bd_sdq1(g) v ge =15v,t j =125c v ge =15v,t j =25c v ce = 800v r g = 4.3 l = 100 h switching energy losses (j) e on2 , turn on energy loss (j) t r, rise time (ns) t d(on) , turn-on delay time (ns) switching energy losses (j) e off , turn off energy loss (j) t f, fall time (ns) t d (off) , turn-off delay time (ns) i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 9, turn-on delay time vs collector current figure 10, turn-off delay time vs collector current i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 11, current rise time vs collector current figure 12, current fall time vs collector current i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 13, turn-on energy loss vs collector current figure 14, turn off energy loss vs collector current r g , gate resistance (ohms) t j , junction temperature (c) figure 15, switching energy losses vs. gate resistance figure 16, switching energy losses vs junction temperature r g = 4.3 , l = 100 h, v ce = 800v v ce = 800v t j = 25c , t j =125c r g = 4.3 l = 100 h v ge = 15v t j = 25 or 125c,v ge = 15v 5 10 15 20 25 30 35 5 10 15 20 25 30 35 5 10 15 20 25 30 35 5 10 15 20 25 30 35 5 10 15 20 25 30 35 5 10 15 20 25 30 35 0 10 20 30 40 50 0 25 50 75 100 125 r g = 4.3 , l = 100 h, v ce = 800v 1210 86 4 2 0 1614 12 10 86 4 2 0 30002500 2000 1500 1000 500 0 50004500 4000 3500 3000 2500 2000 1500 1000 500 0 t j = 125c, v ge = 15v t j = 25c, v ge = 15v 200180 160 140 120 100 8060 40 20 0 300250 200 150 100 50 0 35003000 2500 2000 1500 1000 500 0 35003000 2500 2000 1500 1000 500 0 v ce = 800v v ge = +15v r g = 4.3 t j = 125c t j = 25c v ce = 800v v ge = +15v r g = 4.3 t j = 125c t j = 25c e on2, 30a e off, 30a e on2, 15a e off, 15a e on2, 7.5a e off, 7.5a v ce = 800v v ge = +15v t j = 125c v ce = 800v v ge = +15v r g = 4.3 e on2, 30a e off, 30a e on2, 15a e off, 15a e on2, 7.5a e off, 7.5a downloaded from: http:///
050-7598 rev c 7-2009 apt15gn120bd_sdq1(g) typical performance curves 2,0001,000 500100 5010 5045 40 35 30 25 20 15 10 50 c, capacitance ( p f) i c , collector current (a) v ce , collector-to-emitter voltage (volts) v ce , collector to emitter voltage figure 17, capacitance vs collector-to-emitter voltage figure 18,minimim switching safe operating area 0 10 20 30 40 50 0 200 400 600 800 1000 1200 1400 c ies c res c oes 0.700.60 0.50 0.40 0.30 0.20 0.10 0 z jc , thermal impedance (c/w) 0.3 d = 0.9 0.7 single pulse rectangular pulse duration (seconds) figure 19, maximum effective transient thermal impedance, junction-to-case vs pulse duration 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 0 5 10 15 20 25 30 f max , operating frequency (khz) i c , collector current (a) figure 20, operating frequency vs collector current t j = 125 c t c = 75 c d = 50 %v ce = 800v r g = 4.3 140100 5010 6 0.5 0.1 0.05 f max = min (f max , f max2 ) 0.05 f max1 = t d(on) + t r + t d(off) + t f p diss - p cond e on2 + e off f max2 = p diss = t j - t c r jc peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: downloaded from: http:///
050-7598 rev c 7-2009 apt15gn120bd_sdq1(g) figure 22, turn-on switching waveforms and de? nitions figure 23, turn-off switching waveforms and de? nitions t j = 125c collector current collector voltage gate voltage switching energy 5% 10% t d(on) 90% 10% t r 5% t j = 125c collector voltage collector current gate voltage switching energy 0 90% t d(off) 10% t f 90% apt15dq120 i c a d.u.t. v ce figure 21, inductive switching test circuit v cc downloaded from: http:///
050-7598 rev c 7-2009 apt15gn120bd_sdq1(g) typical performance curves characteristic / test conditions maximum average forward current (t c = 127c, duty cycle = 0.5) rms forward current (square wave, 50% duty) non-repetitive forward surge current (t j = 45c, 8.3ms) symbol i f (av) i f (rms) i fsm symbol v f characteristic / test conditions i f = 15a forward voltage i f = 30a i f = 15a, t j = 125c static electrical characteristics unit amps unit volts min typ max 2.8 2.4 2.45 apt15gn120bd_sdq1(g) 1529 110 dynamic characteristics maximum ratings all ratings: t c = 25c unless otherwise speci? ed. ultrafast soft recovery anti-parallel diode min typ max - 21 - 240 - 260 - 3 - - 290 - 960 - 6 - - 130 - 1340 - 19 unit ns nc amps ns nc amps ns nc amps characteristic reverse recovery time reverse recovery time reverse recovery charge maximum reverse recovery current reverse recovery time reverse recovery charge maximum reverse recovery current reverse recovery time reverse recovery charge maximum reverse recovery current symbol t rr t rr q rr i rrm t rr q rr i rrm t rr q rr i rrm test conditions i f = 15a, di f /dt = -200a/ s v r = 800v, t c = 25 c i f = 15a, di f /dt = -200a/ s v r = 800v, t c = 125 c i f = 15a, di f /dt = -1000a/ s v r = 800v, t c = 125 c i f = 1a, di f /dt = -100a/ s, v r = 30v, t j = 25 c z jc , thermal impedance (c/w) 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 rectangular pulse duration (seconds) figure 24. maximum effective transient thermal impedance, junction-to-case vs. pulse duration 1.201.00 0.80 0.60 0.40 0.20 0 0.5 single pulse 0.1 0.3 0.7 0.05 peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: d = 0.9 downloaded from: http:///
050-7598 rev c 7-2009 apt15gn120bd_sdq1(g) 400350 300 250 200 150 100 50 0 2520 15 10 50 duty cycle = 0.5 t j = 175 c 0 25 50 75 100 125 150 25 50 75 100 125 150 175 1 10 100 200 3530 25 20 15 10 50 1.21.0 0.8 0.6 0.4 0.2 0.0 8070 60 50 40 30 20 10 0 c j , junction capacitance k f , dynamic parameters (pf) (normalized to 1000a/ s) i f(av) (a) t j , junction temperature ( c) case temperature ( c) figure 29. dynamic parameters vs. junction temperature figure 30. maximum average forward current vs. casetemperature v r , reverse voltage (v) figure 31. junction capacitance vs. reverse voltage q rr , reverse recovery charge i f , forward current (nc) (a) i rrm , reverse recovery current t rr , reverse recovery time (a) (ns) t j = 175 c t j = -55 c t j = 25 c t j = 125 c 0 1 2 3 4 5 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 t j = 125 c v r = 800v 7.5a 15a 30a t j = 125 c v r = 800v 30a 7.5a 15a 6050 40 30 20 10 0 25002000 1500 1000 500 0 t j = 125 c v r = 800v 30a 15a 7.5a t rr q rr q rr t rr i rrm v f , anode-to-cathode voltage (v) -di f /dt, current rate of change(a/ s) figure 25. forward current vs. forward voltage figure 26. reverse recovery time vs. current rate of change -di f /dt, current rate of change (a/ s) -di f /dt, current rate of change (a/ s) figure 27. reverse recovery charge vs. current rate of change figure 28. reverse recovery current vs. current rate of change downloaded from: http:///
050-7598 rev c 7-2009 apt15gn120bd_sdq1(g) typical performance curves 4 3 1 2 5 5 zero 1 2 3 4 di f /dt - rate of diode current change through zero crossing. i f - forward conduction current i rrm - maximum reverse recovery current. t rr - reverse r ecovery time, measured from zero crossing where diode q rr - area under the curve defined by i rrm and t rr . current goes from positive to negative, to the point at which the straight line through i rrm and 0.25 i rrm passes through zero. figure 32. diode test circuit figure 33, diode reverse recovery waveform and definitions 0.25 i rrm pearson 2878 current transformer di f /dt adjust 30 h d.u.t. +18v 0v v r t rr / q rr waveform apt10078bll to - 247 package outline 15.49 (.610)16.26 (.640) 5.38 (.212)6.20 (.244) 6.15 (.242) bsc 4.50 (.177) max. 19.81 (.780)20.32 (.800) 20.80 (.819)21.46 (.845) 1.65 (.065)2.13 (.084) 1.01 (.040)1.40 (.055) 3.50 (.138)3.81 (.150) 2.87 (.113)3.12 (.123) 4.69 (.185)5.31 (.209) 1.49 (.059) 2.49 (.098) 2.21 (.087)2.59 (.102) 0.40 (.016)0.79 (.031) collector collector emitter gate 5.45 (.215) bsc dimensions in millimeters and (inches) 2-plcs. 15.95 (.628)16.05(.632) 1.22 (.048)1.32 (.052) 5.45 (.215) bsc{2 plcs.} 4.98 (.196)5.08 (.200) 1.47 (.058) 1.57 (.062) 2.67 (.105)2.84 (.112) 0.46 (.018) {3 plcs} 0.56 (.022) dimensions in millimeters (inches) heat sink (collector)and leads are plated 3.81 (.150)4.06 (.160) (base of lead) collector(heat sink) 1.98 (.078)2.08 (.082) gate collector emitter 0.020 (.001)0.178 (.007) 1.27 (.050)1.40 (.055) 11.51 (.453)11.61 (.457) 13.41 (.528)13.51(.532) revised8/29/97 1.04 (.041)1.15(.045) 13.79 (.543)13.99(.551) revised 4/18/95 d 3 pak package outline e1 sac: tin, silver, copper e3 sac: tin, silver, copper (cathode) (anode) (cathode) microsemis products are covered by one or more of u.s. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. us and foreign patents pending. all rights reserved. (cathode) (anode) (cathode) downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of APT15GN120BDQ1G

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X